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A CURIOUS FRACTION TREE  

 

Here is something fun to think about.  Consider the following “fraction tree:” 

 

 
 

It is constructed by the following rule:  

 

 
 

Each fraction has two “children:” a left child, a fraction always smaller than 1, and 

right child always larger than 1.  

 

a) Continue drawing the fraction tree for another two rows. 

b) Explain why the fraction 
13

20
 will eventually appear in the tree. (It might be 

easier to first figure what should be the parent of 
13

20
and its grandparent, and so 

on.)  

 

c) Might the fraction
13

20
 appear twice in the tree? 

 

d) Will the fraction 457
777

 eventually appear in the tree? Might it appear twice?  
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e) Are all the fractions that appear in the tree in reduced form? (For example, I 

see the fraction 2 / 3 , but I don’t see its equivalents 4 / 6  or 12 /18 .) 

 

f) Let me give things away: Prove that this tree produces all possible positive 

fractions, written in reduced form, with no fraction ever appearing more than once.  

 

THE EUCLIDEAN ALGORITHM: 

If two numbers a  and b  are multiples of three, then so too will be their 

difference:b a− . In fact, it is not too hard to see that if one lists all the common 

factors of a  and b  and then lists all the common factors of a  and b a− , the two 

lists will be the same. [For example, with 84a =  and 120b =  the pair ( )84,120  has 

common factors: 1, 2, 3, 4, 6, and 12, and the pair ( )84,36  has common factors: 1, 2, 

3, 4, 6, and 12!] 

 

Greek geometer Euclid (ca. 300 B.C.E) noticed this too and went further to observe 

that if we play the game of repeatedly subtracting the smaller number from the 

larger from a pair of numbers to produce new pairs, the lists of common factors 

cannot change:  

 

( ) ( ) ( )
( ) ( ) ( )

84,120 84,36 48,36

12,36 12,24 12,12

→ →

→ → →
 

 

All pairs have common factors: 1, 2, 3, 4, 6 and 12. 
 

As the numbers in the pairs are decreasing in size (we do not allow ourselves to go 

to zero), this process must stop and do so when there is no smaller value to 

subtract from a larger. That is, this process must stop by reaching a pair with a 

common value: ( ),d d . But the pair of numbers d  and d  has the same list of 

common factors as do the original pair a  and b . Since d  is clearly the largest 

common factor of d  and d , we must have that this final number d  is the largest 

common factor of a  and b . 

 

EUCLID’S ALGORITHM:  

To find the greatest common factor of two numbers, repeatedly subtract the 
smaller from the larger until a common value appears. This common value is the 
greatest common factor! 
 

For example, consider 102 and 170. The algorithm gives: 

( ) ( ) ( ) ( )102,170 102,68 34,68 34,34→ → →   

Their greatest common factor is 34. 

 

EXERCISE: Find the greatest common factor of 457 and 777.  
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CONNECTIONS TO THE FRACTION TREE:  

Start at apex 
1

1
 of the fraction tree and follow a path down as far as you please 

and stop at some fraction 
a

b
. Do you see that this path is just the Euclidean 

algorithm conducted in reverse? In fact, starting at /a b  and following your path 

back to 1 / 1  is precisely the path of Euclid’s  algorithm applied to the pair ( ),a b . As 

this reverse path yields the final pair ( )1,1 , the fraction /a b  has greatest common 

factor 1 between its numerator and denominator. That is,  /a bmust be in reduced 

form.  Moreover, every reduced fraction must appear in the tree: just apply the 

Euclidean algorithm to the numerator and denominator to see where it lies in the 

tree. 

 

Finally, no fraction appears twice in the tree. If one did, then its parent too would 

appear twice, as would its grandparent, great grand parent, and so on, all the way 

down to 1 / 1
 
appearing twice, which does not!  

 

 

COMMENT: If we read the fractions left to right across the rows of the tree we 

obtain the sequence:1 1 2 1 3 2 3 1 4, , , , , , , , ,
1 2 1 3 2 3 1 4 3

… . This list contains all the positive 

fractions.  

 

The fact that one list the rationals was first discovered by Georg Cantor in the 

1800s. He accomplished this feat a different way.  

 

CHALLENGE: Put all the rationals, both the positive and negative fractions, 

including zero, into a single list. 

 

SOME MYSTERIES: Look at the numerators that appear in the fraction tree, 

reading across the tree by its rows. We obtain the sequence:  

       1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 … 

(The denominators follow the same sequence offset by one.) 

 

a) Pluck out every second entry, the ones in even positions. This gives 1, 1, 2, 1, 3, 2, 

3, 1, …, the original sequence! 

 

b) Each entry in an odd position (after the first) is the sum of its two neighbours! 
2 1 1, 3 1 2, 3 2 1, 4 1 3, 5 3 2,= + = + = + = + = + …  

 

c) Every third entry is even. All other entries are odd.  
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d) The entries between the ones are palindromes: 2    323   4352534    

5473857275837451   … . The digits of each of these palindromes add to one less 

than a power of three.            

 

RESEARCH CORNER: Prove these claims.  Discover more remarkable properties of 

this sequence. Can you push the sequence backwards? For instance, b) says that the 

entry to the left of the first 1 must be zero. What’s next on the left? 

 

 

 

 

THE FULL STORY  

 

This remarkable fraction tree is known as the Stern-Brocot tree and it appears in 

[Graham, Knuth and Patashnik]. A similar construct, known as the Calkin-Wilf tree, 

is given by a very similar algorithm: each reduced fraction 
a

b
 has left child 

a

a b+
 

but right child 
b

a b+
. Its properties, akin to what we have outlined in the 

newsletter, are presented in [Calkin and Wilf]. The content of this essay also 

appears in [Tanton]. 

 

In the Fall of 2009, young students of the St. Mark’s Institute of Mathematics 

research class explored the properties of the Stern-Brocot tree: 

 

 
 

They asked the following question:  
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If we enumerate the fractions reading across the rows of the tree we 
obtain the following sequence of all positive rationals:  

 
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4
, , , , , , , , , , , , , , , , , ,
1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7

…  

 
What is the 100th fraction in this list? The 400,003rd fraction? Is it possible 
to determine the N -th fraction in this list without having to enumerate 
entire rows of this tree? 

 

Here is their result:  

 

 

Theorem 1: Write N  in base two and take note of the count of digits that appear 
in each block of 1s and 0s in its representation. Suppose 
  

��� ��
1 2 01

1 1 0 01 1 0 01 1
k k ka a a aa

N
− −

= ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

 
(with 0a  set equal to zero if N  is even). Then theN -th fraction Nf in the Stern-

Brocot  sequence is the continued fraction:  
 

0 1 2 0

1

2

1
[ , , , , ]

1

1

N k

k

f a a a a a

a

a
a

= = +
+

+

…

⋯

 . 

 

 

 
For example, the number one-hundred in base two is 1100100 and so  

 

100

1 7
0

1 19
2

1
1

1
2
2

f = + =
+

+
+

 

 

and 400003 in base two is 1100001101010000011 and so  

 

400003

1553
[2,5,1,1,1,1, 2, 4, 2]

713
f = = . 
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Proof: Construct a tree of similar shape using the counting numbers:  

 

 
 

We see that it follows the rule:  

 

 
 

For numbers written in binary, this has a nice interpretation: 

 

To create the “left child” of a counting number, append a zero at the end of 
its binary representation. To create a “right child,” append a one. 

 

Thus each digit 0 in a binary representation of a number represents a left down-

step in the tree and each 1 (after the first) a right down-step in the tree. The 

number fourteen, for example, with binary code 1110 can be interpreted as “1RRL” 

which means: 

 

 Start at 1. Step right. Step right. Step left. 
 

In terms of blocks, ff ��� ��
1 2 01

1 1 0 01 1 0 01 1
k k ka a a aa

N
− −

= ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ has blocks 1 1 0, , , ,k ka a a a− …  

(with 0a  possibly zero), then left child has blocks 1 1 0, , , , ,1,0k ka a a a− …  if 0 0a ≠  and 

blocks 1 1 0, , , , 1,0k ka a a a− +…  if 0 0a = , and a right child has blocks 

1 1 0, , , , 1k ka a a a− +… . 
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The fractions in the Stern-Brocot tree follow the same pattern! If 

  

0

1

2

1

1

1

k

a
a

b
a

a
a

= +
+

+⋯

  

then its left child is:  

 

0

1

2

1 1
0

1 1
1 1

1/

1

1

k

a

a b

a b
a

a

a
a

= = +
+ + +

+
+

+⋯

 

 

(which equals  

1

2

1 1
0

1 1
1 1

1/

k

a

a b
a

a b
a

a

= = +
+ + + +

+⋯

 if 0 0a = ),  and its right child 

is   

 

( )0

1

2

1
1 1

1

1

k

a b a
a

b b
a

a
a

+
= + = + +

+
+⋯

 

 

This establishes the proof.         □ 

 

 

Students went further and established the following additional curiosity: 

 

Theorem 2: For 
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4
, , , , , , , , , , , , , , , , , ,
1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7

… , the sum of any 

fraction in the sequence and the reciprocal of its next term is always an odd 

integer. Precisely, 1 0

1
2 1N

N

f a
f

− + = +  where 0a  are the number of zeros at the tail 

end of the binary representation of N .   
 

 

This provides a swift means for computing the N -th fraction Nf  if 1Nf − is already 

known.   
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THE NUMERATORS IN THE FRACTION TREE 

 

Again let Nf  denote the N -th fraction in the Stern-Brocot tree in reading left to 

right across its rows. Given the construct of the tree, it is not difficult to see that 

the denominator of Nf  always matches the numerator of 1Nf + . Thus if Ne  denotes 

the numerator of Nf  we have: 

 

  
1

N

N

N

e
f

e +

=   

 

with the sequence of numerators beginning 1, 1, 2, 1, 3, 2, 3, 1, …. 

 

Also, given the construct of the tree: 

 

 
 

we see 

2

2 1 1

N N

N N N

e e

e e e+ +

=

= +
 

 

This shows that the even terms the sequence { }Ne  match the original sequence and 

that the odd terms satisfy 2 1 1 2 2 2N N N N Ne e e e e+ + += + = +  as claimed in the 

newsletter. The palindromic properties of the sequence follow as a consequence of 

these relations. (The sequence starts with the palindromes 1 and 121 and these 

represent the next few even terms of the sequence perpetuating the symmetry. 

The odd terms, being the sums of neighboring terms, preserve this property.)    

 

ANOTHER BINARY CONNECTION 

 

Every positive integer has a unique binary representation using the digits 0 and 1. 

But if we permit use of the digit 2 as well, a number may be expressed in base two 

in more than one way. For example, the number ten now has five possible 

representations: 
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1010 8 2

1002 8 1 1

210 4 4 2

202 4 4 1 1

122 4 2 2 1 1

↔ +

↔ + +

↔ + +

↔ + + +

↔ + + + +

 

 

I present this to young students as a weighing puzzle:  

 

I have two rocks each weighing 1 pound, two rocks each weighing 2 pounds, 
two each weighing 4 pounds, two each weighing 8 pounds, and so on. In how 
many ways can I make ten pounds? 

 

Let ( )b N denote the count of ways of making a weight of N  pounds. (The sequence 

( ){ }b N  is known as Stern’s diatomic sequence [Sloane, A002487].) 

 

If N  is odd, then we must use precisely one 1 pound rock and we’re left trying to 

make a weight of 1N −  pounds using rocks of weights 2, 4, 8, 16 …. Dividing through 

by two we see that this is equivalent to computing 
1

2

N
b

− 
 
 

.  Thus we have:  

 

( ) ( )2 1b k b k+ =  

  

If N  is even, we can either use two 1 pound rocks and match a weight of 2N −  

pounds with the remaining rocks (and there are 
2

2

N
b

− 
 
 

 ways to do this) or we 

can use no 1 pound weights and match N  pounds with the remaining rocks (and 

there are 
2

N
b
 
 
 

 ways to accomplish this). This gives: 

 

 ( ) ( ) ( )2 1b k b k b k= + +  

 

 

These relations allow us to write down the sequence ( ){ }b N : 

 
 1,2,1,3,2,3,1,4,3,5,2,5,3, 4,1,…  

 

and we see the sequence { }Ne offset by one! (The recursive relations for 1Ne −  and 

( )b N  are the same.)    
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Given our work with the Stern-Brocot tree, the following result is clear. But if it 

were presented cold, with no context for its derivation, it is truly mind boggling! 

 

Theorem 3: Consider the sequence 1,2,1,3,2,3,1,4,3,5,2,5,3, 4,1,… . given by 

counting the number of ways to represent each integer in base two using the digits 

0 , 1 and 2 . Then every pair of coprime integers ( ),a b  appears in this sequence as a 

pair of neighboring terms exactly once.  
 

 

We can say more about this sequence by rephrasing theorem 2:  

 

For any three consecutive terms in this sequence, the sum of the first and 
last term is an odd multiple of the middle term.  
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